YoloDotNet 2.2.0
dotnet add package YoloDotNet --version 2.2.0
NuGet\Install-Package YoloDotNet -Version 2.2.0
<PackageReference Include="YoloDotNet" Version="2.2.0" />
paket add YoloDotNet --version 2.2.0
#r "nuget: YoloDotNet, 2.2.0"
// Install YoloDotNet as a Cake Addin #addin nuget:?package=YoloDotNet&version=2.2.0 // Install YoloDotNet as a Cake Tool #tool nuget:?package=YoloDotNet&version=2.2.0
YoloDotNet v2.2
YoloDotNet is a blazing-fast C# .NET 8 implementation of Yolo and Yolo-World models for real-time object detection in images and videos. Powered by ONNX Runtime, and supercharged with GPU acceleration using CUDA, this app is all about detecting objects at lightning speed!
Supported Versions:
Yolov8
Yolov9
Yolov10
Yolov11
Yolo-World
Supported Tasks:
✓ Classification
Categorize an image
✓ Object Detection
Detect multiple objects in a single image
✓ OBB Detection
OBB (Oriented Bounding Box)
✓ Segmentation
Separate detected objects using pixel masks
✓ Pose Estimation
Identifying location of specific keypoints in an image
Batteries not included.
What's new in YoloDotNet v2.2?
Things are moving fast, YoloDotNet 2.2 is already here packed with exciting new features! Ever wanted to experiment with Yolo-World models in .NET? Now's your chance. With Open-Vocabulary detection and real-time, zero-shot object detection, the model can now find objects it hasn't even been trained on. It's a whole new level of object detection fun!
Yolo-World Support: Yep, you read that right – Open-Vocabulary detection is now in the mix! Real-time, zero-shot object detection is here, so the model can spot stuff it’s never been trained on. Mind-blowing, right? More about Yolo-World here.
Pixel Confidence for Segmentation: Need more control? An optional pixel confidence parameter has been added for segmentation. Now it's possible to fine-tune those segmentation masks like a pro 😉
Nuget
> dotnet add package YoloDotNet
Install CUDA (optional)
YoloDotNet with GPU-acceleration requires CUDA Toolkit 12.x and cuDNN 9.x.
ONNX runtime's current compatibility with specific versions.
- Install CUDA v12.x
- Install cuDNN v9.x
- Update your system PATH-variable
Open File Explorer and navigate to the folder where the cuDNN-dll's are installed. The typical path looks like:
C:\Program Files\NVIDIA\CUDNN\v9.x\bin\v12.x
(where x is your version)Once you are in this specific folder (which contains .dll files), copy the folder path from the address bar at the top of the window.
Add the cuDNN-Path to your System Variables:
- Type
env
in windows search - Click on
Edit the system environment variables
- Click on
Environment Variables
- Under
System Variables
select thePath
-variable and clickEdit
- Click on
New
and paste in your cuDNN dll-folder path - Click Ok a million times to save the changes
- Type
Super-duper-important! In order for Windows to pick up the changes in your Environment Variables, make sure to close all open programs before you continue with whatever you were doing 😉
Export Yolo models to ONNX
All models must be exported to ONNX format. How to export to ONNX format.
The ONNX-models included in this repo are from Ultralytics s-series (small). https://docs.ultralytics.com/models.
Verify your model
using YoloDotNet;
// Instantiate a new Yolo object with your ONNX-model
using var yolo = new Yolo(@"path\to\model.onnx");
Console.WriteLine(yolo.OnnxModel.ModelType); // Output modeltype...
Example - Image inference
using YoloDotNet;
using YoloDotNet.Enums;
using YoloDotNet.Models;
using YoloDotNet.Extensions;
using SkiaSharp;
// Instantiate a new Yolo object
using var yolo = new Yolo(new YoloOptions
{
OnnxModel = @"path\to\model.onnx", // Your Yolo model in onnx format
ModelType = ModelType.ObjectDetection, // Set your model type
Cuda = false, // Use CPU or CUDA for GPU accelerated inference. Default = true
GpuId = 0 // Select Gpu by id. Default = 0
PrimeGpu = false, // Pre-allocate GPU before first inference. Default = false
});
// Load image
using var image = SKImage.FromEncodedData(@"path\to\image.jpg");
// Run inference and get the results
var results = yolo.RunObjectDetection(image, confidence: 0.25, iou: 0.7);
// Draw results
using var resultImage = image.Draw(results);
// Save to file
resultImage.Save(@"save\as\new_image.jpg", SKEncodedImageFormat.Jpeg, 80);
Example - Video inference
[!IMPORTANT] Processing video requires FFmpeg and FFProbe
- Download FFMPEG
- Add FFmpeg and ffprobe to the Path-variable in your Environment Variables
using YoloDotNet;
using YoloDotNet.Enums;
using YoloDotNet.Models;
// Instantiate a new Yolo object
using var yolo = new Yolo(new YoloOptions
{
OnnxModel = @"path\to\model.onnx", // Your Yolov8 or Yolov10 model in onnx format
ModelType = ModelType.ObjectDetection, // Set your model type
Cuda = false, // Use CPU or CUDA for GPU accelerated inference. Default = true
GpuId = 0 // Select Gpu by id. Default = 0
PrimeGpu = false, // Pre-allocate GPU before first. Default = false
});
// Set video options
var options = new VideoOptions
{
VideoFile = @"path\to\video.mp4",
OutputDir = @"path\to\output\dir",
//GenerateVideo = true,
//DrawLabels = true,
//FPS = 30,
//Width = 640, // Resize video...
//Height = -2, // -2 automatically calculate dimensions to keep proportions
//Quality = 28,
//DrawConfidence = true,
//KeepAudio = true,
//KeepFrames = false,
//DrawSegment = DrawSegment.Default,
//PoseOptions = MyPoseMarkerConfiguration // Your own pose marker configuration...
};
// Run inference on video
var results = yolo.RunObjectDetection(options, 0.25, 0.7);
// Do further processing with 'results'...
Custom KeyPoint configuration for Pose Estimation
Example on how to configure Keypoints for a Pose Estimation model
// Pass in a KeyPoint options parameter to the Draw() extension method. Ex:
image.Draw(poseEstimationResults, poseOptions);
Access ONNX metadata and labels
The internal ONNX metadata such as input & output parameters, version, author, description, date along with the labels can be accessed via the yolo.OnnxModel
property.
Example:
using var yolo = new Yolo(@"path\to\model.onnx");
// ONNX metadata and labels resides inside yolo.OnnxModel
Console.WriteLine(yolo.OnnxModel);
Example:
// Instantiate a new object
using var yolo = new Yolo(@"path\to\model.onnx");
// Display metadata
foreach (var property in yolo.OnnxModel.GetType().GetProperties())
{
var value = property.GetValue(yolo.OnnxModel);
Console.WriteLine($"{property.Name,-20}{value!}");
if (property.Name == nameof(yolo.OnnxModel.CustomMetaData))
foreach (var data in (Dictionary<string, string>)value!)
Console.WriteLine($"{"",-20}{data.Key,-20}{data.Value}");
}
// Get ONNX labels
var labels = yolo.OnnxModel.Labels;
Console.WriteLine();
Console.WriteLine($"Labels ({labels.Length}):");
Console.WriteLine(new string('-', 58));
// Display
for (var i = 0; i < labels.Length; i++)
Console.WriteLine($"index: {i,-8} label: {labels[i].Name,20} color: {labels[i].Color}");
// Output:
// ModelType ObjectDetection
// InputName images
// OutputName output0
// CustomMetaData System.Collections.Generic.Dictionary`2[System.String,System.String]
// date 2023-11-07T13:33:33.565196
// description Ultralytics YOLOv8n model trained on coco.yaml
// author Ultralytics
// task detect
// license AGPL-3.0 https://ultralytics.com/license
// version 8.0.202
// stride 32
// batch 1
// imgsz [640, 640]
// names {0: 'person', 1: 'bicycle', 2: 'car' ... }
// ImageSize Size [ Width=640, Height=640 ]
// Input Input { BatchSize = 1, Channels = 3, Width = 640, Height = 640 }
// Output ObjectDetectionShape { BatchSize = 1, Elements = 84, Channels = 8400 }
// Labels YoloDotNet.Models.LabelModel[]
//
// Labels (80):
// ---------------------------------------------------------
// index: 0 label: person color: #5d8aa8
// index: 1 label: bicycle color: #f0f8ff
// index: 2 label: car color: #e32636
// index: 3 label: motorcycle color: #efdecd
// ...
Donate
References & Acknowledgements
https://github.com/ultralytics/ultralytics
Product | Versions Compatible and additional computed target framework versions. |
---|---|
.NET | net8.0 is compatible. net8.0-android was computed. net8.0-browser was computed. net8.0-ios was computed. net8.0-maccatalyst was computed. net8.0-macos was computed. net8.0-tvos was computed. net8.0-windows was computed. |
-
net8.0
- Microsoft.ML.OnnxRuntime.Gpu (>= 1.19.2)
- SkiaSharp (>= 2.88.8)
NuGet packages (1)
Showing the top 1 NuGet packages that depend on YoloDotNet:
Package | Downloads |
---|---|
VL.YoloDotNet
YoloDotNet for VL |
GitHub repositories
This package is not used by any popular GitHub repositories.
Things are moving fast, YoloDotNet 2.2 is already here packed with exciting new features! Ever wanted to experiment with Yolo-World models in .NET? Now's your chance. With Open-Vocabulary detection and real-time, zero-shot object detection, the model can now find objects it hasn't even been trained on. It's a whole new level of object detection fun!
In v2.2:
Yolo-World Support:
Yep, you read that right – Open-Vocabulary detection is now in the mix! Real-time, zero-shot object detection is here, so the model can spot stuff it’s never been trained on. Mind-blowing, right?
Pixel Confidence for Segmentation:
Need more control? An optional pixel confidence parameter has been added for segmentation. Now it's possible to fine-tune those segmentation masks like a pro ;)