Tokenizers.HuggingFace 2.21.4

dotnet add package Tokenizers.HuggingFace --version 2.21.4
                    
NuGet\Install-Package Tokenizers.HuggingFace -Version 2.21.4
                    
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="Tokenizers.HuggingFace" Version="2.21.4" />
                    
For projects that support PackageReference, copy this XML node into the project file to reference the package.
<PackageVersion Include="Tokenizers.HuggingFace" Version="2.21.4" />
                    
Directory.Packages.props
<PackageReference Include="Tokenizers.HuggingFace" />
                    
Project file
For projects that support Central Package Management (CPM), copy this XML node into the solution Directory.Packages.props file to version the package.
paket add Tokenizers.HuggingFace --version 2.21.4
                    
#r "nuget: Tokenizers.HuggingFace, 2.21.4"
                    
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
#:package Tokenizers.HuggingFace@2.21.4
                    
#:package directive can be used in C# file-based apps starting in .NET 10 preview 4. Copy this into a .cs file before any lines of code to reference the package.
#addin nuget:?package=Tokenizers.HuggingFace&version=2.21.4
                    
Install as a Cake Addin
#tool nuget:?package=Tokenizers.HuggingFace&version=2.21.4
                    
Install as a Cake Tool

Tokenizers.HuggingFace

.NET bindings for huggingface/tokenizers using protobufs for communication and C-ABI.

How to install

dotnet add package Tokenizers.HuggingFace

Supported targets

  • linux-musl-arm64
  • linux-musl-x64
  • linux-arm64
  • linux-x64
  • osx-arm64
  • osx-x64
  • win-x64
  • win-arm64

Usage

Cases:

  • Normalization
  • PreTokenization
  • Tokenizer (Encode, Decode, Load From File, Train)

Examples

Basic Tokenization from file
using Tokenizers.HuggingFace.Tokenizer;

var tk = Tokenizer.FromFile("./tokenizer.json");
var encodings = tk.Encode("Hello, World!", true).First();
Console.WriteLine($"{string.Join(",", encodings.Ids)}");
// Optionally dispose the tokenizer if no longer needed
// If not disposed, it will be cleaned up by the finalizer
tk.Dispose();
Test Pipeline with normalization and pretokenization
var lowerCase = new Tokenizers.HuggingFace.Normalizers.Lowercase();
Tokenizers.HuggingFace.Normalizers.Sequence normalizer = new([
    new Tokenizers.HuggingFace.Normalizers.Nfd(),
    lowerCase,
    new Tokenizers.HuggingFace.Normalizers.StripAccents()
]);
// Optionally dispose the normalizer if no longer needed
// If not disposed, it will be cleaned up by the finalizer
// Disposing this won't affect the sequence we created
lowerCase.Dispose();
Tokenizers.HuggingFace.PreTokenizers.Bert bert = new();
var testString = new Tokenizers.HuggingFace.PipelineString.PipelineString("H�llo,  W�rld!");
normalizer.Normalize(testString);
bert.PreTokenize(testString);
var splits = testString.GetSplits(
    Tokenizers.HuggingFace.PipelineString.OffsetReferential.Original,
    Tokenizers.HuggingFace.PipelineString.OffsetType.Char,
    includeOffsets: true
);
Console.WriteLine($"Tokens: [{string.Join(",", splits.Select(split=> $"'{split.Item1}'"))}]");
Console.WriteLine($"Offsets: [{string.Join(",", splits.Select(split => split.Item2))}]");
bert.Dispose();
normalizer.Dispose();
testString.Dispose();
Train a all-together-a-bert-tokenizer-from-scratch
var normalizer = new Tokenizers.HuggingFace.Normalizers.Sequence([
    new Tokenizers.HuggingFace.Normalizers.Nfd(),
    new Tokenizers.HuggingFace.Normalizers.Lowercase(),
    new Tokenizers.HuggingFace.Normalizers.StripAccents(),
]);
var preTokenizer = new Tokenizers.HuggingFace.PreTokenizers.Whitespace();
Tokenizers.HuggingFace.Processors.Token[] tokensProcessor = [
    new() { TokenPair = new() { Token = "[CLS]", TokenId = 1 } },
    new() { TokenPair = new() { Token = "[SEP]", TokenId = 2 } },
];
var processor = new Tokenizers.HuggingFace.Processors.TemplateProcessing()
{
    Single = "[CLS] $A [SEP]",
    Pair = "[CLS] $A [SEP] $B:1 [SEP]:1",
};
processor.Tokens = new();
processor.Tokens.Tokens_.AddRange(tokensProcessor);
Tokenizers.HuggingFace.Trainers.AddedToken[] tokensTrainer = [
    new() { Content = "[UNK]", Special = true },
    new() { Content = "[CLS]", Special = true },
    new() { Content = "[SEP]", Special = true },
    new() { Content = "[PAD]", Special = true },
    new() { Content = "[MASK]", Special = true },
];
var trainer = new Tokenizers.HuggingFace.Trainers.WordPieceTrainer() { VocabSize = 30522 };
trainer.SpecialTokens.AddRange(tokensTrainer);
var tk = Tokenizers.HuggingFace.Tokenizer.Tokenizer.FromTrain(
    files: ["corpus.txt"],
    savePath: "my_tokenizer.json",
    model: new() { WordPiece = new() }, // by default uses [UNK]
    trainer: new() { WordPiece = trainer },
    // From here on are optional parameters
    //normalizer: normalizer,
    //preTokenizer: preTokenizer,
    processors: [new() { TemplateProcessing = processor }]
);
Sentence Similarity with sentence-transformers/all-MiniLM-L6-v2

Steps:

  • Create Console app
dotnet new console --name Sentences
dotnet add package Microsoft.ML.OnnxRuntime
dotnet add package Tokenizers.HuggingFace
  • Add the following code to Program.cs
using System.Numerics.Tensors;

using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;

using Tokenizers.HuggingFace.Tokenizer;


var a = SentenceSimilarityModel.GetEmbeddings("Hello, world");
var b = SentenceSimilarityModel.GetEmbeddings("Hello, world, good to be here");

Console.WriteLine($"E: {string.Join(',', a)}");
Console.WriteLine($"a-b: {TensorPrimitives.CosineSimilarity(a, b)}");

static class SentenceSimilarityModel
{
    static readonly Tokenizer tk = Tokenizer.FromFile("./tokenizer.json");
    static readonly InferenceSession session = new InferenceSession("./model.onnx");
    static (int, NamedOnnxValue[]) PrepareInputs(string text)
    {
        var encodings = tk.Encode(text, true, includeTypeIds: true, includeAttentionMask: true).First();
        var sequenceLenght = encodings.Ids.Count;
        var input_ids = new DenseTensor<long>(encodings.Ids.Select(t => (long)t).ToArray(), [1, sequenceLenght]);
        var type_ids = new DenseTensor<long>(encodings.TypeIds.Select(t => (long)t).ToArray(), [1, sequenceLenght]);
        var attention_mask = new DenseTensor<long>(encodings.AttentionMask.Select(t => (long)t).ToArray(), [1, sequenceLenght]);

        return (sequenceLenght, [
            NamedOnnxValue.CreateFromTensor("input_ids", input_ids),
            NamedOnnxValue.CreateFromTensor("token_type_ids", type_ids),
            NamedOnnxValue.CreateFromTensor("attention_mask", attention_mask)
        ]);
    }
    static public float[] GetEmbeddings(string text)
    {
        var (sequenceLenght, inputs) = PrepareInputs(text);
        using IDisposableReadOnlyCollection<DisposableNamedOnnxValue> results = session.Run(inputs);
        var outputTensor = results.First().AsEnumerable<float>().ToArray();
        float[] result = new float[384];
        for (int i = 0; i < sequenceLenght; i++)
        {
            ReadOnlySpan<float> floats = new ReadOnlySpan<float>(outputTensor, i*384, 384);
            TensorPrimitives.Add(floats, result, result);
        }
        TensorPrimitives.Divide(result, sequenceLenght, result);
        return result;
    }
}

Releasing

If you know the target target you are building your project for use:

dotnet build .\YourProject.csproj -c Release -r [target]

This way you avoid including all native libraries.

Product Compatible and additional computed target framework versions.
.NET net6.0 is compatible.  net6.0-android was computed.  net6.0-ios was computed.  net6.0-maccatalyst was computed.  net6.0-macos was computed.  net6.0-tvos was computed.  net6.0-windows was computed.  net7.0 was computed.  net7.0-android was computed.  net7.0-ios was computed.  net7.0-maccatalyst was computed.  net7.0-macos was computed.  net7.0-tvos was computed.  net7.0-windows was computed.  net8.0 was computed.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed.  net9.0 was computed.  net9.0-android was computed.  net9.0-browser was computed.  net9.0-ios was computed.  net9.0-maccatalyst was computed.  net9.0-macos was computed.  net9.0-tvos was computed.  net9.0-windows was computed.  net10.0 was computed.  net10.0-android was computed.  net10.0-browser was computed.  net10.0-ios was computed.  net10.0-maccatalyst was computed.  net10.0-macos was computed.  net10.0-tvos was computed.  net10.0-windows was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

NuGet packages

This package is not used by any NuGet packages.

GitHub repositories (1)

Showing the top 1 popular GitHub repositories that depend on Tokenizers.HuggingFace:

Repository Stars
axzxs2001/Asp.NetCoreExperiment
原来所有项目都移动到**OleVersion**目录下进行保留。新的案例装以.net 5.0为主,一部分对以前案例进行升级,一部分将以前的工作经验总结出来,以供大家参考!
Version Downloads Last Updated
2.21.4 136 9/4/2025
2.21.4-rc.0 172 8/30/2025
1.21.4 397 8/10/2025
1.21.4-rc.1 125 8/17/2025
1.0.1-experimental.1 164 6/26/2025
1.0.0 465 5/10/2025
0.1.0 179 5/8/2025