GenericAgents.Registry 1.2.0

dotnet add package GenericAgents.Registry --version 1.2.0
                    
NuGet\Install-Package GenericAgents.Registry -Version 1.2.0
                    
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="GenericAgents.Registry" Version="1.2.0" />
                    
For projects that support PackageReference, copy this XML node into the project file to reference the package.
<PackageVersion Include="GenericAgents.Registry" Version="1.2.0" />
                    
Directory.Packages.props
<PackageReference Include="GenericAgents.Registry" />
                    
Project file
For projects that support Central Package Management (CPM), copy this XML node into the solution Directory.Packages.props file to version the package.
paket add GenericAgents.Registry --version 1.2.0
                    
#r "nuget: GenericAgents.Registry, 1.2.0"
                    
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
#:package GenericAgents.Registry@1.2.0
                    
#:package directive can be used in C# file-based apps starting in .NET 10 preview 4. Copy this into a .cs file before any lines of code to reference the package.
#addin nuget:?package=GenericAgents.Registry&version=1.2.0
                    
Install as a Cake Addin
#tool nuget:?package=GenericAgents.Registry&version=1.2.0
                    
Install as a Cake Tool

๐Ÿค– Generic AI Agent System

<div align="center">

A production-ready, enterprise-grade AI agent orchestration platform built with .NET 8

CI/CD Security Tests .NET

NuGet Core NuGet Tools NuGet AI NuGet Security Downloads

Transform your applications with intelligent, scalable AI agent workflows

Quick Start โ€ข Architecture โ€ข Use Cases โ€ข Documentation

</div>


๐ŸŒŸ Why Generic AI Agent System?

The Generic AI Agent System provides a robust foundation for building intelligent, autonomous workflows in any application. Whether you're developing customer service automation, content processing pipelines, or complex decision-making systems, this platform offers enterprise-grade infrastructure for AI agent orchestration.

โœจ Key Benefits

  • ๐Ÿš€ Production Ready: Enterprise-grade security, monitoring, and CI/CD
  • ๐Ÿ”’ Secure by Design: JWT authentication, RBAC authorization, secret management
  • ๐Ÿ“Š Observable: Comprehensive metrics, logging, and monitoring
  • ๐Ÿ—๏ธ Scalable Architecture: Microservices with Docker containerization
  • ๐Ÿงช Test-Driven: 100% test coverage with automated quality assurance
  • ๐Ÿ”„ CI/CD Ready: Automated testing, security scanning, and deployment

๐Ÿš€ Quick Start

๐Ÿ“ฆ NuGet Packages

Install individual packages based on your needs:

# Core foundation (always required)
dotnet add package GenericAgents.Core

# Add specific components as needed
dotnet add package GenericAgents.Tools           # Tool execution framework
dotnet add package GenericAgents.AI              # AI service integration
dotnet add package GenericAgents.Security        # JWT auth & RBAC
dotnet add package GenericAgents.Orchestration   # Workflow engine
dotnet add package GenericAgents.Observability   # Monitoring & metrics
dotnet add package GenericAgents.Configuration   # Configuration management
dotnet add package GenericAgents.Communication   # Inter-agent messaging
dotnet add package GenericAgents.Registry        # Tool registry & discovery
dotnet add package GenericAgents.DI              # Dependency injection
dotnet add package GenericAgents.Tools.Samples   # Example tools

๐Ÿ’ก Simple Integration Example

// Program.cs - Add to your existing .NET application
using Agent.DI;
using Agent.AI.Models;

var builder = WebApplication.CreateBuilder(args);

// Add your existing services
builder.Services.AddControllers();

// Add GenericAgents services (CORRECT API)
builder.Services.AddAgentServices(builder.Configuration);
builder.Services.AddAgentToolDiscovery();

// Optional: Add security features
builder.Services.AddEnvironmentSecretManagement();
builder.Services.AddLocalJwtAuthentication("your-jwt-signing-key");

var app = builder.Build();

// Configure pipeline
app.UseHttpsRedirection();
app.UseAuthorization();
app.MapControllers();
app.Run();

appsettings.json configuration:

{
  "AI": {
    "Provider": "OpenAI",
    "ModelId": "gpt-4",
    "ApiKey": "your-openai-api-key",
    "MaxTokens": 2000,
    "Temperature": 0.7
  }
}

Your existing controller enhanced with AI:

using Agent.Core;
using Agent.Core.Models;
using Agent.AI;

[ApiController]
public class YourController : ControllerBase
{
    private readonly IAIService _aiService;
    private readonly IToolRegistry _toolRegistry;
    
    public YourController(IAIService aiService, IToolRegistry toolRegistry)
    {
        _aiService = aiService;
        _toolRegistry = toolRegistry;
    }
    
    [HttpPost("/analyze")]
    public async Task<IActionResult> AnalyzeWithAI(AnalysisRequest request)
    {
        // Use AI service to analyze the request
        var aiResponse = await _aiService.ProcessRequestAsync(
            $"Analyze this data: {request.Data}", 
            CancellationToken.None
        );
        
        // Combine with your existing business logic
        var enhancedResult = await YourBusinessLogic(request, aiResponse);
        
        return Ok(new
        {
            OriginalData = request.Data,
            AIInsights = aiResponse.Content,
            EnhancedResult = enhancedResult
        });
    }
}

๐Ÿณ Full Platform Setup (Optional)

For complete platform development:

Prerequisites

  • Docker and Docker Compose
  • .NET 8 SDK (for development)
  • Git

1. Clone and Setup

git clone https://github.com/ThomasGooch/GenericAiAgents.git
cd generic-agents

# Generate secure environment variables
cat > .env << EOF
POSTGRES_PASSWORD=$(openssl rand -base64 32)
REDIS_PASSWORD=$(openssl rand -base64 32)  
GRAFANA_ADMIN_PASSWORD=$(openssl rand -base64 32)
JWT_SIGNING_KEY=$(openssl rand -base64 64)
EOF

2. Launch the Platform

# Start all services
docker-compose up -d

# Verify system health
curl http://localhost:8080/health

3. Access Services

  • ๐Ÿค– Agent API: http://localhost:8080/health
  • ๐Ÿ“Š Grafana Dashboard: http://localhost:3000 (admin / your_grafana_password)
  • ๐Ÿ“ˆ Prometheus Metrics: http://localhost:9090
  • ๐Ÿ—„๏ธ Database: PostgreSQL on port 5432
  • โšก Cache: Redis on port 6379

4. Verify Everything Works

# Run the full test suite
dotnet test --configuration Release

# Check security status
docker-compose logs agent-api | grep -i "authentication\|authorization"

# View metrics
curl http://localhost:8080/metrics

๐Ÿ—๏ธ Architecture

<div align="center">

graph TB
    Client[Client Applications] --> Gateway[API Gateway]
    Gateway --> Auth[JWT Authentication]
    Auth --> RBAC[RBAC Authorization]
    RBAC --> Core[Agent.Core]
    
    Core --> Orchestration[Agent.Orchestration]
    Core --> Tools[Agent.Tools]
    Core --> Config[Agent.Configuration]
    
    Orchestration --> Workflow[Workflow Engine]
    Tools --> Execution[Tool Execution]
    
    Core --> Observability[Agent.Observability]
    Observability --> Prometheus[Prometheus]
    Observability --> Grafana[Grafana]
    
    Core --> Security[Agent.Security]
    Security --> Secrets[Secret Management]
    Security --> KeyVault[Azure Key Vault]
    
    Core --> Database[(PostgreSQL)]
    Core --> Cache[(Redis)]

</div>

๐Ÿ”ง Core Components

Component Purpose Key Features
๐Ÿค– Agent.Core Foundation layer Abstractions, interfaces, domain models
โš™๏ธ Agent.Configuration Configuration management Validation, environment-specific settings
๐ŸŽญ Agent.Orchestration Workflow engine Agent coordination, task scheduling
๐Ÿ“Š Agent.Observability Monitoring & metrics Prometheus integration, health checks
๐Ÿ”ง Agent.Tools Tool execution Extensible tool framework
๐Ÿ”’ Agent.Security Security framework JWT, RBAC, secret management
๐Ÿงช Agent.Performance Performance optimization Benchmarking, resource management

๐Ÿ”’ Security Architecture

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚                   Client Request                    โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚          JWT Authentication Middleware             โ”‚
โ”‚  โ€ข Local JWT (Development)                         โ”‚
โ”‚  โ€ข Okta Integration (Production)                   โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚              RBAC Authorization                     โ”‚
โ”‚  โ€ข Admin: Full system access                       โ”‚
โ”‚  โ€ข User: Limited with permissions                  โ”‚
โ”‚  โ€ข Service: System-to-system                       โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚                Application Logic                    โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚               Secret Management                     โ”‚
โ”‚  โ€ข Environment Variables (Dev)                     โ”‚
โ”‚  โ€ข Azure Key Vault (Production)                    โ”‚
โ”‚  โ€ข Cached Secret Manager (Performance)             โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

๐Ÿ’ก Use Cases

๐Ÿ› ๏ธ Integration Scenarios

The Generic AI Agent System is designed to enhance your existing applications with intelligent automation. Here are key scenarios where this platform adds significant value:

1. ๐Ÿ“ž Customer Service Automation

Problem: High volume of repetitive customer inquiries overwhelming support teams.

Solution with Agent System:

// Your existing customer service API
[HttpPost("/tickets")]
public async Task<IActionResult> CreateTicket(TicketRequest request)
{
    // Traditional approach: Direct to human agents
    
    // Enhanced with Agent System:
    var agentWorkflow = await _agentOrchestrator.CreateWorkflowAsync(
        "customer-service-triage",
        new { ticket = request, priority = "auto-classify" }
    );
    
    var result = await agentWorkflow.ExecuteAsync();
    
    if (result.CanBeAutomated)
    {
        return Ok(await _agentSystem.HandleAutomatically(request));
    }
    
    // Route to human agent with AI insights
    return Ok(await RouteToHumanAgent(request, result.Insights));
}

Benefits: 70% reduction in manual ticket handling, instant response times, 24/7 availability.

2. ๐Ÿ“ Content Processing Pipeline

Problem: Manual content review and processing bottlenecks.

Solution Integration:

// Your existing CMS or content system
[HttpPost("/content/process")]
[RequireWorkflowManager] // Uses Agent System RBAC
public async Task<IActionResult> ProcessContent(ContentRequest request)
{
    // Create multi-step AI workflow
    var pipeline = await _agentOrchestrator.CreateWorkflowAsync("content-pipeline", new
    {
        steps = new[]
        {
            "content-analysis",      // AI analyzes content quality
            "seo-optimization",      // AI suggests SEO improvements  
            "compliance-check",      // AI checks regulatory compliance
            "auto-categorization"    // AI categorizes and tags
        },
        content = request.Content
    });
    
    var result = await pipeline.ExecuteAsync();
    
    // Your existing business logic enhanced with AI insights
    return Ok(new ContentProcessingResult 
    {
        OriginalContent = request.Content,
        AIInsights = result.Insights,
        Recommendations = result.Recommendations,
        ComplianceStatus = result.ComplianceStatus
    });
}

Benefits: 10x faster processing, consistent quality checks, automated compliance.

3. ๐Ÿ” Document Intelligence & Workflow Automation

Problem: Complex document processing requiring multiple steps and approvals.

Solution Integration:

// Your existing document management system
public class DocumentProcessingService
{
    private readonly IAgentOrchestrator _orchestrator;
    private readonly IYourExistingDocumentService _documentService;
    
    public async Task<ProcessingResult> ProcessDocumentAsync(Document document)
    {
        // Create intelligent document workflow
        var workflow = await _orchestrator.CreateWorkflowAsync("document-intelligence", new
        {
            document = document,
            steps = new[]
            {
                "extract-metadata",     // AI extracts key information
                "classify-document",    // AI determines document type
                "validate-content",     // AI validates completeness
                "route-for-approval",   // AI determines approval workflow
                "generate-summary"      // AI creates executive summary
            }
        });
        
        var aiResults = await workflow.ExecuteAsync();
        
        // Integrate AI results with your existing business logic
        var processedDoc = await _documentService.EnhanceWithAI(document, aiResults);
        
        // Route based on AI recommendations
        if (aiResults.RequiresHumanReview)
        {
            await _documentService.RouteForHumanReview(processedDoc, aiResults.ReviewReasons);
        }
        else
        {
            await _documentService.AutoApprove(processedDoc);
        }
        
        return new ProcessingResult
        {
            Document = processedDoc,
            AIInsights = aiResults,
            ProcessingTime = workflow.ExecutionTime,
            AutomationLevel = aiResults.AutomationConfidence
        };
    }
}

Benefits: 90% faster document processing, consistent classification, intelligent routing.

4. ๐Ÿ›’ E-commerce Intelligence

Problem: Complex product recommendations, pricing optimization, and inventory management.

Integration Example:

// Your existing e-commerce platform
[HttpGet("/products/recommendations/{userId}")]
[RequirePermission("product:read")] // Uses Agent System authorization
public async Task<IActionResult> GetPersonalizedRecommendations(string userId)
{
    // Create AI-driven recommendation workflow
    var recommendationWorkflow = await _agentOrchestrator.CreateWorkflowAsync(
        "personalized-recommendations", 
        new 
        {
            userId = userId,
            context = await GetUserContext(userId),
            algorithms = new[] 
            {
                "collaborative-filtering",
                "content-based-filtering",
                "behavioral-analysis",
                "trend-analysis"
            }
        }
    );
    
    var aiRecommendations = await recommendationWorkflow.ExecuteAsync();
    
    // Combine AI insights with your business rules
    var finalRecommendations = await _productService.ApplyBusinessRules(
        aiRecommendations.Products,
        aiRecommendations.Confidence,
        await GetInventoryStatus()
    );
    
    return Ok(new RecommendationResponse
    {
        Products = finalRecommendations,
        AIInsights = aiRecommendations.Reasoning,
        PersonalizationScore = aiRecommendations.PersonalizationScore
    });
}
5. ๐Ÿฅ Healthcare Workflow Automation

Problem: Complex patient care workflows with multiple decision points.

Integration Pattern:

// Your existing healthcare system
public class PatientCareWorkflowService
{
    public async Task<CareRecommendation> ProcessPatientDataAsync(PatientData patient)
    {
        // HIPAA-compliant AI workflow
        var careWorkflow = await _secureOrchestrator.CreateWorkflowAsync(
            "patient-care-analysis",
            new 
            {
                patientData = patient.Anonymized(), // Your anonymization logic
                workflows = new[]
                {
                    "symptom-analysis",
                    "risk-assessment", 
                    "treatment-options",
                    "care-coordination"
                },
                complianceLevel = "HIPAA"
            }
        );
        
        var aiInsights = await careWorkflow.ExecuteAsync();
        
        // Your existing medical logic enhanced with AI
        var recommendations = await _medicalService.ValidateWithMedicalRules(
            aiInsights,
            patient.MedicalHistory
        );
        
        return new CareRecommendation
        {
            PatientId = patient.Id,
            AIInsights = aiInsights.ClinicalInsights,
            RecommendedActions = recommendations.Actions,
            UrgencyLevel = aiInsights.UrgencyAssessment,
            RequiresPhysicianReview = recommendations.RequiresReview
        };
    }
}

๐Ÿ”„ Common Integration Patterns

Pattern 1: AI-Enhanced Decision Making
// Before: Manual decision logic
if (complexBusinessCondition1 && complexBusinessCondition2)
{
    return ProcessManually();
}

// After: AI-enhanced with fallback to business rules
var aiDecision = await _agentSystem.GetDecisionRecommendation(context);
if (aiDecision.Confidence > 0.8)
{
    return ProcessWithAI(aiDecision);
}
return ProcessWithBusinessRules(context); // Fallback to existing logic
Pattern 2: Gradual AI Adoption
// Start with AI insights alongside existing logic
public async Task<ProcessingResult> ProcessRequest(Request request)
{
    // Your existing processing (unchanged)
    var traditionalResult = await _existingService.Process(request);
    
    // Add AI insights in parallel (no risk)
    var aiInsights = await _agentSystem.AnalyzeRequest(request);
    
    // Combine both approaches
    return new EnhancedResult
    {
        TraditionalResult = traditionalResult,
        AIInsights = aiInsights,
        Recommendations = aiInsights.SuggestedImprovements
    };
}
Pattern 3: Workflow Orchestration
// Complex multi-step process made simple
var workflow = await _agentOrchestrator.CreateWorkflowAsync("multi-step-process", new
{
    steps = new[]
    {
        new { name = "validate-input", useAI = true },
        new { name = "process-data", useAI = true },
        new { name = "generate-output", useAI = false }, // Your existing logic
        new { name = "quality-check", useAI = true }
    },
    data = inputData
});

var result = await workflow.ExecuteAsync();

๐Ÿ”’ Security Features

๐Ÿ›ก๏ธ Enterprise-Grade Security

  • ๐Ÿ” JWT Authentication: Local development + Okta production integration
  • ๐Ÿ‘ฅ RBAC Authorization: Role-based access control with fine-grained permissions
  • ๐Ÿ”‘ Secret Management: Azure Key Vault integration with local development support
  • ๐Ÿšซ Zero Hardcoded Secrets: All sensitive data externalized
  • ๐Ÿ” Security Scanning: Automated vulnerability detection and dependency auditing

๐Ÿ—๏ธ Security Architecture

// Example: Securing your AI agent endpoints
[RequireAdmin] // Only administrators
public async Task<IActionResult> ManageSystemAgents()
{
    return Ok(await _agentManager.GetAllAgents());
}

[RequireWorkflowManager] // Admin or users with workflow:manage permission
public async Task<IActionResult> CreateWorkflow(WorkflowRequest request)
{
    var userId = HttpContext.GetJwtUserId();
    return Ok(await _orchestrator.CreateWorkflowAsync(request, userId));
}

[RequirePermission("metrics:view")] // Fine-grained permission control
public async Task<IActionResult> GetMetrics()
{
    return Ok(await _metricsService.GetSystemMetrics());
}

๐Ÿ“Š Monitoring & Observability

Built-in Monitoring Stack

  • ๐Ÿ“ˆ Prometheus: Metrics collection and storage
  • ๐Ÿ“Š Grafana: Rich dashboards and visualization
  • ๐Ÿ” Health Checks: Comprehensive system health monitoring
  • ๐Ÿ“ Structured Logging: Centralized log aggregation
  • โšก Performance Metrics: Agent execution times, throughput, error rates

Key Metrics Tracked

// Automatic metrics collection for your AI workflows
public async Task<WorkflowResult> ExecuteWorkflow(string workflowId)
{
    using var timer = _metrics.StartTimer("workflow_execution_duration");
    
    try
    {
        var result = await _orchestrator.ExecuteAsync(workflowId);
        _metrics.Counter("workflow_executions_total").WithTag("status", "success").Increment();
        return result;
    }
    catch (Exception ex)
    {
        _metrics.Counter("workflow_executions_total").WithTag("status", "error").Increment();
        _metrics.Counter("workflow_errors_total").WithTag("error_type", ex.GetType().Name).Increment();
        throw;
    }
}

๐Ÿงช Testing

Comprehensive Test Coverage

  • โœ… Unit Tests: All core components with 100% coverage
  • โœ… Integration Tests: End-to-end workflow testing
  • โœ… Security Tests: Authentication and authorization validation
  • โœ… Performance Tests: Load testing and benchmarking
  • โœ… Contract Tests: API compatibility verification

Running Tests

# Run all tests
dotnet test --configuration Release

# Run with coverage
dotnet test --collect:"XPlat Code Coverage"

# Run specific test categories
dotnet test --filter "Category=Security"
dotnet test --filter "Category=Integration"
dotnet test --filter "Category=Performance"

# Run in Docker (matches CI environment)
docker-compose -f docker-compose.test.yml up --abort-on-container-exit

๐Ÿš€ CI/CD Pipeline

Automated Quality Assurance

  • ๐Ÿงช Multi-project Testing: Parallel test execution across all components
  • ๐Ÿ”’ Security Scanning: Daily vulnerability scans and dependency audits
  • ๐Ÿ“Š Code Quality: Static analysis and code coverage reporting
  • ๐Ÿณ Container Security: Docker image vulnerability scanning
  • ๐Ÿš€ Automated Deployment: Development and production pipeline

GitHub Actions Workflows

  • ci.yml: Comprehensive CI/CD with testing, building, and deployment
  • security.yml: Daily security scanning and vulnerability assessment
  • release.yml: Automated versioning, Docker builds, and GitHub releases
  • pr-check.yml: Pull request validation and automated code review

๐Ÿ“š Documentation

Quick Reference

Development Resources

# Generate API documentation
dotnet tool install -g Microsoft.dotnet-openapi
dotnet openapi add url https://localhost:8080/swagger/v1/swagger.json

# View system metrics
curl http://localhost:8080/metrics

# Check health status
curl http://localhost:8080/health | jq

# View configuration
curl http://localhost:8080/configuration | jq

๐Ÿค Contributing

We welcome contributions from the community! Whether you're fixing bugs, adding features, improving documentation, or sharing your agent tools, your contributions make this project better for everyone.

๐ŸŒŸ Ways to Contribute

๐Ÿ“ Documentation & Examples
  • Improve existing documentation
  • Add usage examples and tutorials
  • Create integration guides for popular frameworks
  • Share your use cases and implementation stories
๐Ÿ› Bug Reports & Fixes
  • Report bugs with detailed reproduction steps
  • Fix existing issues marked as good first issue or help wanted
  • Improve error messages and handling
๐Ÿš€ Feature Development
  • Implement requested features from the roadmap
  • Add new tool implementations to Agent.Tools.Samples
  • Create new agent types and workflow patterns
  • Enhance security, performance, or monitoring features
๐Ÿ”ง Tool Contributions

We especially welcome new tool implementations! Examples:

[Tool("database-query")]
[Description("Executes database queries safely")]
public class DatabaseTool : BaseTool
{
    protected override async Task<ToolResult> ExecuteInternalAsync(
        Dictionary<string, object> parameters, 
        CancellationToken cancellationToken)
    {
        // Your tool implementation
        var query = parameters["query"].ToString();
        var result = await ExecuteQuerySafely(query);
        return ToolResult.CreateSuccess(result);
    }
}

๐Ÿš€ Getting Started

1. Development Setup
# Fork and clone the repository
git clone https://github.com/YOUR_USERNAME/generic-agents.git
cd generic-agents

# Create a feature branch
git checkout -b feature/your-feature-name

# Setup development environment
dotnet restore
dotnet build

# Run tests to ensure everything works
dotnet test

# Start development services (optional)
docker-compose -f docker-compose.dev.yml up -d
2. Development Workflow
# Make your changes
# Write/update tests for your changes
dotnet test

# Ensure code quality
dotnet format
dotnet build --configuration Release

# Commit your changes
git add .
git commit -m "feat: add your feature description"

# Push and create pull request
git push origin feature/your-feature-name

๐Ÿ“‹ Contribution Guidelines

โœ… Code Standards
  • Follow .NET conventions: Use standard C# naming and formatting
  • Write tests: All new features must include unit tests
  • Documentation: Update XML docs for public APIs
  • Security: Never commit secrets or sensitive data
โœ… Pull Request Process
  1. Create focused PRs: One feature/fix per pull request
  2. Write descriptive titles: Use conventional commits (feat:, fix:, docs:, etc.)
  3. Include tests: Ensure your code is tested and CI passes
  4. Update documentation: Include relevant documentation updates
  5. Link issues: Reference any related GitHub issues
โœ… Issue Reporting

When reporting bugs, please include:

  • Environment: OS, .NET version, package versions
  • Reproduction steps: Clear steps to reproduce the issue
  • Expected vs actual behavior: What should happen vs what happens
  • Logs/errors: Any relevant error messages or logs

๐ŸŽฏ Good First Issues

New to the project? Look for these labels:

  • good first issue: Perfect for newcomers
  • help wanted: Community input needed
  • documentation: Documentation improvements
  • samples: New example implementations

๐Ÿ’ฌ Community Guidelines

๐Ÿค Code of Conduct
  • Be respectful and inclusive to all contributors
  • Provide constructive feedback on pull requests
  • Help newcomers get started with the project
  • Follow the Contributor Covenant
๐Ÿ—ฃ๏ธ Communication Channels

๐Ÿ† Recognition

Contributors will be:

  • Listed in our CONTRIBUTORS.md file
  • Recognized in release notes for significant contributions
  • Invited to join our contributor Discord community
  • Eligible for "Contributor" badges on their GitHub profiles

๐Ÿ“š Resources for Contributors

Development Resources
Useful Commands
# Generate project documentation
dotnet build --configuration Release
dotnet tool install -g Microsoft.dotnet-openapi

# Run specific test categories
dotnet test --filter "Category=Unit"
dotnet test --filter "Category=Integration"

# Check code coverage
dotnet test --collect:"XPlat Code Coverage"

# Format code
dotnet format

# Security scan
dotnet list package --vulnerable

๐Ÿ™ Thank you for contributing to the Generic AI Agent System!

Your contributions help build the future of AI agent orchestration for the .NET community.


๐Ÿ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.


๐Ÿ†˜ Support

  • ๐Ÿ“– Documentation: docs/
  • ๐Ÿ› Issues: GitHub Issues
  • ๐Ÿ’ฌ Discussions: GitHub Discussions
  • ๐Ÿ“ง Enterprise Support: Contact us for enterprise support options

<div align="center">

โญ If this project helps you build better AI agent workflows, please give it a star! โญ

โฌ† Back to Top

</div>

Product Compatible and additional computed target framework versions.
.NET net8.0 is compatible.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed.  net9.0 was computed.  net9.0-android was computed.  net9.0-browser was computed.  net9.0-ios was computed.  net9.0-maccatalyst was computed.  net9.0-macos was computed.  net9.0-tvos was computed.  net9.0-windows was computed.  net10.0 was computed.  net10.0-android was computed.  net10.0-browser was computed.  net10.0-ios was computed.  net10.0-maccatalyst was computed.  net10.0-macos was computed.  net10.0-tvos was computed.  net10.0-windows was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

NuGet packages (1)

Showing the top 1 NuGet packages that depend on GenericAgents.Registry:

Package Downloads
GenericAgents.DI

Dependency injection extensions and hosted services for seamless integration of AI agent components with .NET hosting.

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last Updated
1.2.0 61 9/26/2025
1.0.1 111 9/25/2025
1.0.0 109 9/25/2025